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Rashba spin-orbit coupled semiconductor-superconductor hybrid structures in the presence of
Zeeman splitting have emerged as the first experimentally realizable topological superconductor
supporting zero-energy Majorana bound states. However, recent experimental studies in these hy-
brid structures are not in complete agreement with the theoretical predictions, for example, the
observed height of the zero-bias conductance peak (ZBCP) associated with the Majorana bound
states is less than 10% of the predicted quantized value 2e2/h. We try to understand the sources of
various discrepancies between the recent experiments and the earlier theories by starting from a mi-
croscopic theory and studying non-equilibrium transport in these systems at arbitrary temperatures
and applied bias voltages. Our approach involves quantum Langevin equations and non-equilibrium
Green’s functions. Here we are able to model the tunnel coupling between the one-dimensional
semiconductor-superconductor hybrid structure and the metallic leads realistically; study the role
of tunnel coupling on the height of the ZBCP and the subgap conductance; predict the nature of the
splitting of the ZBCP with an increasing magnetic field beyond the critical field; show the behavior
of the ZBCP with an increasing gate-controlled onsite potential; and study the evolution of the
full differential conductance across the topological quantum phase transition. When the applied
magnetic field is quite large compared to the Rashba splitting and the bulk energy gap is much
reduced, we find the ZBCP even for an onsite potential much larger than the applied magnetic field.
The height of the corresponding ZBCP depends on the tunnel coupling even at zero temperature
and can be much smaller than 2e2/h.

I. INTRODUCTION

Low-dimensional conventional-superconductor setups
have attracted growing attention recently, particularly
in the context of the study of fluctuations1 and quantum
phase transitions.2 On the other hand, Kitaev3 was the
first to propose the idea of realizing Majorana fermions
as localized states at the ends of an ideal 1D (spinless)
p-wave superconducting wire motivated by the search for
robust quantum information storage. This, eventually,
generated a growing interest to produce emergent Majo-
rana fermions in the solid-state laboratory setting.4–8 A
particularly promising proposal to engineer effective p-
wave superconductivity is by using a Rashba spin-orbit
coupled semiconductor in proximity with a conventional
s-wave (spin-singlet) superconductor and in the presence
of Zeeman splitting due to an applied magnetic field.9–12

The Rashba coupling creates two helical bands which
wind counterclockwise and clockwise. Introduction of the
proximity induced superconductivity gives rise p±ip pair-
ing for the two helical bands. One then needs to apply a
magnetic field to break the time-reversal doubling of the
fermionic states on the spin-orbit coupled semiconductor.
This thus leads to a topologically nontrivial single species
p+ip superconductor as originally conceived by Kitaev.3

In the presence of a magnetic field, there is an effective
s-wave pairing between the two helical bands apart from
the p±ip pairing for each band. The strength of the p-
wave component of pairing depends on the amount of
Rashba splitting. Parameters are to be chosen so as to

keep a finite p-wave component of the induced pairing
gap such that the Majorana end states in a wire geome-
try are protected from the bulk excitations.

The recent experimental efforts to detect Majo-
rana quasiparticles in one-dimensional semiconductor-
superconductor hybrid structures in the presence of
strong spin-orbit coupling and a Zeeman field13–16 dis-
play several discrepancies with the existing theoretical
predictions.11,12 These experimental studies have mostly
concentrated in measuring a zero-bias conductance peak
in the tunneling differential conductance of hybrid struc-
tures at low temperatures by tuning the applied mag-
netic field along the one-dimensional (1D) structure. It
has been theoretically predicted that the existence of
zero-energy Majorana bound states (MBSs) in these sys-
tems manifests through a quantized zero-bias conduc-
tance peak (ZBCP) of height 2e2/h at zero-temperature
and above a critical magnetic field (Bc) which is de-
termined by the gating of the spin-orbit coupled semi-
conductor and the magnitude of the induced supercon-
ducting gap. On the other hand, the height of the
observed ZBCP in the experiments is much lower (less
than 10%) than the theoretical predictions. It has been
also seen that the measured ZBCP splits at higher mag-
netic fields beyond Bc. There are also additional dis-
crepancies between theory and experiments which are
not yet completely resolved. For example, it was the-
oretically predicted that the superconducting gap would
close across a magnetic-field or onsite-potential driven
topological quantum phase transition between a non-
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topological (s-wave) superconducting phase and a topo-
logical (p-wave) superconducting phase with zero-energy
Majorana modes.9–11,17 However, some experiments15

have claimed to observe such gap closing and some have
not seen a gap closing.13 The expected disappearance of
the ZBCP as the Zeeman field is rotated from the wire
axis in the plane formed by the wire axis and the di-
rection of the effective spin-orbit field has not been ob-
served in the latest experiment,16 but it was seen in the
previous experiments.13,15 The emergence of real MBSs
in these systems can also be probed by looking for a
fractional Josephson effect in some type of interference
experiments,3,18–20 which manifests though a 4π period-
icity in an ac Josephson measurement. These type of
doubled-Shapiro-step measurements21 are complex and
harder to interpret theoretically with a realistic micro-
scopic modeling.

The existing theoretical studies to calculate
current-voltage characteristics of various topological-
superconductor configurations use tools such as
formalisms based on the Landauer-Büttiker scattering
theory,6,22,23,37 or the Keldysh nonequilibrium Green’s
function (NEGF) formalism25,26 (as well as other
variant approaches, see for instance Ref. 27). With the
latter, models have been more idealized, while with
the former, models do not take into account the bath
or the coupling with it explicitly but in an effective
manner. While a bath can induce decoherence in the
semiconductor-superconductor hybrid structures, (and
thus limit the performance as a qubit of a pair of MBSs),
its coupling to the hybrid structures also controls the
height of the ZBCP at finite temperature. Therefore,
an explicit modeling of the baths and their couplings
is an important issue to understand the recent experi-
mental data. Recently, we have extended the quantum
Langevin equations and Green’s functions (LEGF)
formalism to study nonequilibrium transport in p-wave
superconductors.28 One advantage of the LEGF method
is that it starts with an explicit Hamiltonian for the bath
and the coupling along with the system Hamiltonian,
thus the role of the bath and the coupling is quite clearly
elucidated. In this paper we provide a detail derivation
of the LEGF method and further extend it for the case
of spin-orbit coupled semiconductor-superconductor
heterostructures in the presence of an external magnetic
field. We demonstrate a nonmonotonic dependence of
the height of the ZBCP with the applied magnetic field
and the onsite potential. We also show the oscillation
of the splitting width in the ZBCP with an increasing
magnetic field beyond Bc. We further show how the
increase of the tunnel coupling can modify the height
of the ZBCP at finite temperatures and control the
appearance of sub-gap conductance. In short, we provide
a complete theory of linear and nonlinear transport in
the topological superconductors at all temperatures and
elucidate many interesting results for the dependence of
the ZBCP on various experimentally tunable parameters.
The rest of this paper is organized as follows: in Sec. II

we introduce the model of the wire, in Sec. III we explain
the treatment using quantum Langevin equations and
Green’s functions, and in Sec. IV we present the results
mentioned above.

II. MODEL AND MAJORANA MODES

Let us consider a single-channel semiconductor
nanowire with a strong Rashba spin-orbit coupling (for
example, as in InSb or InAs) in close proximity to an
ordinary (s-wave) superconductor (such as, for instance,
NbN, NbTiN, or Al) and in the presence of an external
magnetic field applied along the axis of the nanowire.
It has been theoretically predicted earlier9,11,12 that this
system undergoes a topological quantum phase transi-

tion at a certain critical magnetic field, Bc =
√

∆2 + µ2

where ∆ is a proximity induced superconducting gap and
µ is an onsite potential for the nanowire. For an applied
magnetic field B > Bc the hybrid structure is driven
into a chiral p-wave topological superconducting phase
supporting two real zero-energy MBSs at the two ends
of the nanowire. The requirement of finite p-wave com-
ponent of induced pairing gap for the protection of the
MBSs along with the relation for the critical field Bc
impose a stringent restriction on the onsite potential or
carrier density. One needs a low carrier density in or-
der to satisfy those conditions, therefore the engineered
structures are susceptible to disorder. The ZBCP in the
differential conductance of the tunneling transport cal-
culations is a signature of the emergence of MBSs in the
topological superconducting phase. The semiconducting
wire in the semiconductor-superconductor heterostruc-
ture is modeled by a tight-binding lattice Hamiltonian
of electrons with a proximity induced s-wave BCS pair-
ing of amplitude ∆.11,12 The wire has N lattice sites and
each of its two end sites is coupled to an infinite metallic
bath which is itself modeled by a one-dimensional tight-
binding system of free electrons. The effective Hamilto-
nian of the system consisting of the nanowire,29,30 the
baths, and the tunnel couplings reads

H = HW +HLB +HRB +HLWB +HRWB , (1)

HW =

N−1∑
l=1

[
− γ

∑
σ=↑↓

(a†l,σal+1,σ + a†l+1,σal,σ)

+ α(a†l+1,↑al,↓ − a
†
l+1,↓al,↑ + a†l,↓al+1,↑ − a†l,↑al+1,↓)

]
+ 2(µ− γ)

N∑
σ=↑↓,l=1

(a†l,σal,σ −
1

2
)

+

N∑
l=1

[
2B(a†l,↑al,↓ + a†l,↓al,↑)− 2∆(a†l,↑a

†
l,↓ + al,↓al,↑)

]
,

HmB =

∞∑
σ=↑↓,n=1

−γm(am†σ,na
m
σ,n+1 + am†σ,n+1a

m
σ,n), m = L,R,
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HmWB = −γ′m
∑
σ=↑↓

(am†σ,1aσ,lm + a†σ,lma
m
σ,1), lL = 1, lR = N.

Here a†l,σ and am†n,σ denote respectively an electron cre-
ation operator on the semiconductor nanowire and on
the mth bath (here m = L,R). The Hamiltonian of the
nanowire is denoted by HW , that of the mth bath by HmB ,
and the tunnel coupling between the nanowire and the
mth bath is HmWB . The hopping amplitude of an electron
on the wire is γ, µ is an onsite potential energy of the
wire controlled by gating, α is the strength of the Rashba
spin-orbit coupling on the semiconductor wire and B is
an applied magnetic field along the axis of the wire. We
shall choose below the values of the different parameters

for our plots to be consistent with the values reported in
recent experiments.

Next we introduce the following local transformation
for the electron operator of the semiconductor nanowire,

al,σ =
1

2
(cA,l,σ + i cB,l,σ), with

c†β,l,σ = cβ,l,σ, {cβ,l,σ, cβ′,l′,σ′} = 2δβ,β′δl,l′δσ,σ′ , (2)

where cβ,l,σ is a Majorana (or real) fermion opera-
tor. The semiconductor-superconductor hybrid struc-
ture Hamiltonian in the Majorana-fermion basis is thus
rewritten as:

HW =
i

2

[
− γ

N−1∑
σ=↑↓,l=1

(cA,l,σcB,l+1,σ + cA,l+1,σcB,l,σ) + 2(µ− γ)

N∑
σ=↑↓,l=1

cA,l,σcB,l,σ + α

N−1∑
l=1

(cA,l,↓cB,l+1,↑

+ cA,l+1,↑cB,l,↓ − cA,l,↑cB,l+1,↓ − cA,l+1,↓cB,l,↑) +

N∑
l=1

[
2(B + ∆)cA,l,↑cB,l,↓ + 2(B −∆)cA,l,↓cB,l,↑

]]
. (3)

A. Low Energy Spectrum

When B > Bc we find that the above 4N × 4N ma-
trix of the Hamiltonian in Eq. (3) has two degenerate
zero-energy eigenstates for large N . These zero-energy
Majorana modes are separated from all the other energy
eigenvalues by an energy gap of order ∆. However, there
is a splitting between the two Majorana modes for smaller
values of N and the energy of the Majorana modes is not
exactly zero. The crossover between these two, longer-
vs smaller-length, behaviors of the MBSs is determined
by the coherence length ξ0 (which is roughly given by
πvF /∆, where vF is the Fermi velocity) of the spin-orbit
coupled semiconductor-superconductor hybrid structure.
The coherence length is longer for a smaller proximity-
induced superconducting gap or spin-orbit coupling, and
it also depends on the applied magnetic field and the
onsite potential.31 It is believed that the length of the
nanowires in recent experiments was of the same order
as the coherence length ξ0.13,31 Therefore it is expected
that there is an overlap between the two MBSs at the two
ends of the nanowire in these experiments. The overlap
between the MBSs at the two ends goes to zero for a long
nanowire where the length of the wire is much longer than
the coherence length ξ0. Whenever there is splitting in
the energy of the MBSs of an isolated hybrid structure,
it is expected to show up as a splitting in the ZBCP of
tunneling measurements as long as the broadening of the
conductance peak due to the coupling with the bath and
the temperature is smaller than the energy splitting of
the two MBSs. We also find that as the applied mag-
netic field is increased much above Bc, the bulk energy

gap is substantially reduced. There are still zero-energy
real eigenstates at these parameters, however these zero-
energy states are very delocalized and extend into the
bulk of the wire. When the onsite potential is increased
at a higher magnetic field, we find zero-energy states in
the isolated Hamiltonian of Eq. (3) even when the ap-
plied field becomes smaller compared to the critical field
at that value of the potential (cf.32). But when the onsite
potential is substantially increased the spectrum of the
Hamiltonian in Eq. (3) becomes again gaped near zero
energy, and there is no zero-energy state (same as for the
simpler Kitaev model). Below, we consider this regime
of parameter sets carefully in our analysis of transport,
because we suspect that the recent experiments might
be probing it. Although the spectrum and local density
of states of this regime had already been analyzed via
exact diagonalization of the isolated-wire Hamiltonian, a
transport analysis had not been carried out previously.

III. QUANTUM LANGEVIN EQUATIONS AND
GREEN’S FUNCTION FORMALISM

Here we develop a steady-state non-equilibrium trans-
port theory for the spin-orbit coupled semiconductor-
superconductor hybrid structures by employing quantum
Langevin equations and Green’s functions. We obtain a
set of generalized quantum Langevin equations of mo-
tion for the nanowire’s operators in the Majorana basis
following Refs..33–36 The description here for the hybrid
structures is similar to that for the Kitaev chain in our
earlier study.28 We assume that the metallic baths at the
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two ends of the nanowire are disconnected from the wire
for all times t ≤ t0. Each bath is in thermal equilibrium
at a specified temperature Tm and a chemical potential
µm for both spin components of the bath. We connect
the baths to the nanowire at a time t0, and we are inter-

ested in the steady-state properties of the nanowire that
set in after the end of any transient dynamics. We write
the Heisenberg equations of motion for the operators on
the nanowire in the Majorana basis at t > t0,

ċA,l,σ =
2(µ− γ)

~
cB,l,σ +

2(B + ∆)

~
δσ,↑cB,l,↓ +

2(B −∆)

~
δσ,↓cB,l,↑ −

γ

~
cB,l+1,σ −

γ

~
cB,l−1,σ +

α

~
δσ,↓cB,l+1,↑

+
α

~
δσ,↑cB,l−1,↓ −

α

~
δσ,↓cB,l−1,↑ −

α

~
δσ,↑cB,l+1,↓ +

iγ′L
~
δl,1(aL1,σ − a

L†
1,σ) +

iγ′R
~
δl,N (aR1,σ − a

R†
1,σ), (4)

ċB,l,σ = −2(µ− γ)

~
cA,l,σ −

2(B −∆)

~
δσ,↑cA,l,↓ −

2(B + ∆)

~
δσ,↓cA,l,↑ +

γ

~
cA,l+1,σ +

γ

~
cA,l−1,σ −

α

~
δσ,↓cA,l+1,↑

− α

~
δσ,↑cA,l−1,↓ +

α

~
δσ,↓cA,l−1,↑ +

α

~
δσ,↑cA,l+1,↓ +

γ′L
~
δl,1(aL1,σ + aL†1,σ) +

γ′R
~
δl,N (aR1,σ + aR†1,σ), (5)

for l = 1, 2, 3, ..., N and with the convention that cA,0,σ =
cA,N+1,σ = cB,0,σ = cB,N+1,σ = 0. The Heisenberg equa-
tions of motion for the bath operators (where σ =↑, ↓ and
m = L,R) are:

ȧmn,σ =
iγm
~

(amn−1,σ + amn+1,σ), for n = 2, 3, ...∞, (6)

ȧL1,σ =
iγL
~
aL2,σ +

iγ′L
~
a1,σ, (7)

ȧR1,σ =
iγR
~
aR2,σ +

iγ′R
~
aN,σ. (8)

The equations of motion of the wire operators, Eqs. (4,5),

in the Majorana basis involve the bath variables am1,σ, a
m†
1,σ

with m = L,R, that we can eliminate by replacing with
their exact solutions. For that we note that the equations
of motion of the each bath, given by Eqs. (6,7,8), are a
set of linear coupled equations with an inhomogeneous
part given by iγ′mam,σ/~. We solve these equations of
motion using the single-particle retarded Green’s func-
tion of the isolated baths, which is given by gm+

σ (t) =
−iθ(t)e−iHmσ t/~ where Hm

σ is the single-particle Hamilto-
nian of the spin σ component of the mth bath. As here
the single particle retarded Green’s function of the each
bath is the same for both spin components, hereafter we
avoid the spin index in gm+

σ (t), and write it as gm+(t).
One finally finds that the solution for the boundary site
on the mth bath is given by (for t > t0)

aL1,σ(t) = i

∞∑
n=1

gL+1n (t− t0)aLn,σ(t0)

−
∫ ∞
t0

dt′ gL+1,1 (t− t′)γ
′
L

~
a1,σ(t′), (9)

aR1,σ(t) = i

∞∑
n=1

gR+
1n (t− t0)aRn,σ(t0)

−
∫ ∞
t0

dt′ gR+
1,1 (t− t′)γ

′
R

~
aN,σ(t′). (10)

Plugging these solutions into Eqs. (4,5) for the wire op-
erators in the Majorana basis, we get a set of generalized
quantum Langevin equations (see Appendix A for the full
expressions) where we identify ηm,σ as a noise contribu-
tion from the spin-σ component of the mth bath while the
terms involving Σ±m(t) are the corresponding dissipative
terms.

ηm,σ(t) = − iγ
′
m

~

∞∑
n=1

gm+
1n (t− t0) amn,σ(t0), (11)

Σ+
m(t) = (

γ′m
~

)2gm+
1,1 (t), and Σ−m(t) = [Σ+

m(t)]†.(12)

The noise depends on the bath’s initial distribution
which we have chosen to correspond to thermal equi-
librium. The properties of the noise are written most
conveniently in the frequency domain. Let us consider
the limit t0 → −∞, and introduce the Fourier trans-
forms c̃β,l,σ(ω) = (1/2π)

∫∞
−∞ dteiωtcβ,l,σ(t), gm+(ω) =∫∞

−∞ dteiωtgm+(t), η̃m,σ(ω) = (1/2π)
∫∞
−∞ dteiωtηm,σ(t)

and Σ+
m(ω) = (γ′m/~)2gm+

1,1 (ω) (here gm+
1,1 (ω) is the mth

bath single-particle Green’s function evaluated at the

first site). We also have c̃†β,m,σ(ω) = c̃β,m,σ(−ω). We use

the definition Γm(ω) = −Im[Σ+
m]/π = (γ′m/~)2ρm(ω),

where ρm(ω) is the local density of states of either spin
component at the first site (n = 1) on themth bath. With
these definitions it is easy to show that the noise-noise
correlations are given by

〈η̃†l,σ(ω)η̃m,σ′(ω′)〉 = Γl(ω)f(ω, µl, Tl)δ(ω − ω′)δlmδσ,σ′ ,

(13)
where f(ω, µm, Tm) = 1/{exp[(~ω − µm)/kBTm] + 1}
is the Fermi distribution function and kB is the Boltz-
mann constant. The eigenvalues and eigenfunctions of
the mth bath Hamiltonian are given by εmq = −2γm cos q

and ψq(p) =
√

2 sin(qp), where q lies in the range [0, π]
and p is an integer. By convention, the wave functions
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are normalized so that 〈ψq|ψq′〉 = πδ(q − q′). Therefore,

gm+
1,1 (t) = −iθ(t)

∑
q

ψq(1)ψ∗q (1)e−iε
m
q t/~, and

gm+
1,1 (ω) =

∫ ∞
−∞

dt gm+
1,1 (t)eiωt

= limη→0

∑
q

|ψq(1)|2

ω − εmq /~ + iη

=
∑
q

|ψq(1)|2

ω − εmq /~
− iπ

∑
q

|ψq(1)|2δ(ω − εmq /~).

After converting the q sum to an integral in the range
[0, π], we find that, within the band-width of the bath
(|~ω| < 2γm), gm+

1,1 (ω) is given by

gm+
1,1 (ω) =

~
γm

[
~ω

2γm
− i
(

1− ~2ω2

4γ2m

)1/2
]
. (14)

Using these single-particle retarded Green’s functions of
the baths, we find

Σ−m(−ω)− Σ+
m(ω) = −2Σ+

m(ω), Σ−m(−ω) + Σ+
m(ω) = 0,

1

2iπ
[Σ−m(ω)− Σ+

m(ω)] = Γm(ω). (15)

We solve the generalized quantum Langevin equations
in Eqs. (A1,A2) by Fourier transform and we get the
following steady-state solution for the operators on the
nanowire.

c̃l(ω) =

4N∑
m=1

G+
lm(ω)h̃m(ω), where

G+(ω) = Z−1(ω), Zlm(ω) = Φlm(ω) +Alm(ω), (16)

and we use the following notation for simplicity, cA,l,↑ ≡
c4l−3, cB,l,↑ ≡ c4l−1, cA,l,↓ ≡ c4l−2, cB,l,↓ ≡ c4l for
l = 1, 2, 3, ..., N . The expressions for Φlm(ω), Alm(ω)

and h̃m(ω) are given in Appendix B. Here G+(ω) is
the Green’s function of the full system consisting of the
nanowire and the baths. We can calculate nonequilib-
rium steady-state properties of the hybrid structures us-
ing the above solutions for the operators. We now pro-
ceed in the next section to evaluate the electrical current
in the system under an arbitrarily large applied bias volt-
age and finite temperature.

IV. CURRENT-VOLTAGE CHARACTERISTICS
AND ZERO-BIAS CONDUCTANCE PEAK

We define a local charge density at the boundary site
of the nanowire and find an expression for the electri-
cal current through the nanowire using the local density
and the continuity equations.33,36 We call jm(t) the in-
ward electrical current flowing from the mth bath into
the nanowire. It is given by

jm(t) =
iγ′m
~
〈
∑
σ=↑,↓

(a†lm,σa
m
1,σ − am1,σ

†alm,σ) 〉

= −2 Im
[γ′m
~
〈
∑
σ=↑,↓

a†lm,σa
p
1,σ〉
]
, (17)

where 〈...〉 denotes averaging over noise using the result of
Eq. (13). Notice that, due to the proximity-induced su-
perconductivity in the nanowire, the total electron charge
is not conserved. Thus, the electrical current from the left
bath into the nanowire is not necessarily equal in mag-
nitude to that from the nanowire into the right bath, for
arbitrary chemical potentials in the baths. In order to be
specific, from now on we explicitly discuss the electrical
current from the left bath. We find from Eq. 17, after
using Eq. 9 with t0 → −∞,

jL(t) = 2 Im
(
〈
∑
σ=↑,↓

{
a†1,σ(t)

[
ηL,σ(t)

+

∫ ∞
−∞

dt′ Σ+
L(t− t′)a1,σ(t′)

]}
〉
)
. (18)

Let us derive each part of the above expression separately.
After averaging over the noise using Eq. 13, we find for
the first part of Eq. 18,

〈
∑
σ=↑,↓

a†1,σ(t)ηL,σ(t)〉 =

∫ ∞
−∞

dω

2

{[
−G+

11(−ω)− iG+
13(−ω)

+iG+
31(−ω)−G+

33(−ω)
]
ΓL(ω)f(ω, µL, TL) + [−G+

22(−ω)

−iG+
24(−ω) + iG+

42(−ω)−G+
44(−ω)

]
ΓL(ω)f(ω, µL, TL)

}
.

After applying the local Majorana basis transformation
we find for the second part of Eq. 18,

〈
∑
σ=↑,↓

a†1,σ(t)

∫ ∞
−∞

dt′Σ+
L(t− t′)a1,σ(t′)〉

=
1

4

∫ ∞
−∞

dt′Σ+
L(t− t′)〈

∑
σ=↑,↓

(cA,1,σ(t)cA,1,σ(t′) + cB,1,σ(t)

×cB,1,σ(t′)− icB,1,σ(t)cA,1,σ(t′) + icA,1,σ(t)cB,1,σ(t′))〉,

in where we can now use the solutions of the operators
on the nanowire given by Eq. 16. For example, the first
term is given by

1

4

∫ ∞
−∞

dt′Σ+
L(t− t′)〈

∑
σ=↑,↓

cA,1,σ(t)cA,1,σ(t′)〉

=
1

4

∫ ∞
−∞

∫ ∞
−∞

dωdω′e−i(ω+ω
′)t Σ+

L(ω)

4N∑
m=1

4N∑
n=1

(G+
1m(ω′)

×G+
1n(ω) +G+

2m(ω′)G+
2n(ω))〈h̃m(ω′)h̃n(ω)〉. (19)

The noise average in Eq. 19 is carried out using Eq. B3
along with the noise correlation properties from Eq. 13.
In the steady state, jL(t) is independent of time. Here we
evaluate the current-voltage characteristics of the hybrid
nanowire structures in the steady state. We can calculate
the full Green’s function in Eq. 16 numerically and use
them to find the current at zero or finite temperatures
using the above results.
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FIG. 1. Zero temperature dI/dV vs. V with increasing mag-
netic field. Everywhere N = 40, γm = γ = 1, α = 0.2, µ = 0
and |∆| = 0.3. The magnetic field is chosen as follows: (a)
B = 0.2, (b) B = 0.3, (c,d) B = 0.4, (e) B = 1.25, (f)
B = 1.5, (g) B = 1.9, and (h) B = 2.1. Everywhere γ′

m = 0.2
(m = L,R), except γ′

m = 0.5 in (d).

A. Numerical Results

We now focus on the ‘symmetric’ case for which the
two baths are identical (γL = γR) and are connected to
the nanowire by identical contacts (γ′L = γ′R or ΓL =
ΓR ≡ Γ) while µL = µ̃ = −µR and TL = T = TR. In this
case the steady-state currents jL,R are equal up to a sign
and

jL(µ̃,−µ̃) =

∫ ∞
−∞

dω

2π
T (ω)

[
f(ω, µ̃, T )− f(ω,−µ̃, T )

]
(20)

Here T (ω), which contains contributions to transport
coming from both electrons and holes, can be simply in-
terpreted in the symmetric case via the zero-temperature
differential conductance (with µ̃ ≡ eV , e = 1)

dI

dV
=
djL(µ̃,−µ̃)

dµ̃
=

1

2π

(
T (µ̃) + T (−µ̃)

)
(21)

One can also calculate the finite temperature differ-
ential conductance from Eq. 20, which is important to

understand the recent experiments. At zero tempera-
ture and lower magnetic field (for relatively low µ) the
height of the ZBCP in the topologically nontrivial phase
is independent of the contacts with the wire as shown
in Fig. 1 panels (c,d) for two different contact strengths.
Those two plots show that the width of the ZBCP in-
creases with increasing strength of contacts and the con-
ductance within the pairing gap becomes also finite for
stronger contacts. The latter can be understood because
the dephasing induced by the baths becomes substan-
tial with an increasing strength of the contacts and that
creates finite conductance even within the superconduct-
ing pairing gap. However, at finite temperatures such
that kBT > Γ, the height of the ZBCP depends on
the strength of the contacts.37 When that happens, the
height of ZBCP falls rapidly with increasing tempera-
ture of the baths as illustrated in Fig. 2 panels (a,b,d).
If Γ > kBT the effect of temperature on the height of
the peak is minimal and the ZBCP remains almost like
at zero temperature [see Fig. 2(c)].
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FIG. 2. Finite-temperature dI/dV vs. V at different temper-
atures (kBT ) and strengths of contacts. Everywhere N = 40,
γm = γ = 1 (with m = L,R), µ = 0, α = 0.2, B = 0.4
and |∆| = 0.3. The rest of the parameters are as follows:
(a) γ′

m = 0.2, kBT = 0.01; (b) γ′
m = 0.1, kBT = 0.01; (c)

γ′
m = 0.5, kBT = 0.01; and (d) γ′

m = 0.2, kBT = 0.05.

In Fig. 1 we show the nature of the zero-temperature
differential conductance with an increasing magnetic
field. When the applied field is B < Bc (with Bc = ∆
since µ = 0 in the case of the figure), there is a gap
in the zero-temperature differential conductance around
zero voltage for relatively weaker contacts; as is shown in
Fig. 1(a). The gap in dI/dV closes at B = Bc as shown
in Fig. 1(b). For B just above Bc, the gap reopens and
a ZBCP appears in the dI/dV characteristics with its
height being 2e2/h at zero temperature for the ideal case;
this is shown in Fig. 1(c). As we further increase B, the
pairing gap separating the MBSs from the higher excita-
tions is reduced. Here we find a splitting in the ZBCP as
well as finite voltage conductance peaks inside the super-
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conducting pairing gap. The height of the split MBS peak
is e2/h and it is shown in Fig. 1(e). The splitting of the
ZBCP disappears as we increase B further, however the
height of ZBCP does not retrieve to its full value of 2e2/h
as is shown in Fig. 1(f). As the field is increased even
more, we find first a new closing of the gap, and finally a
topologically trivial gapped superconducting phase with-
out MBSs. These are shown in Fig. 1(g,h). Recently, an
oscillation in the splitting of the ZBCP with increasing
magnetic field has been proposed as a smoking gun for
detection of the MBSs in these hybrid structures.31 Here
we find from a full microscopic transport calculation that
one can expect one such oscillation in the splitting of the
ZBCP with increasing field. However, we also show that
the height of the ZBCP is reduced with increasing field
which is an important piece of information for the ex-
periments, and has indeed been observed recently.16 An
additional important finding is the retrieval of the gap-
closing phenomena at higher magnetic fields coincident
with the disappearance of the MBSs, which is analogous
to the lower-field scenario just before the emergence of
the MBSs and reminiscent of the way the topological-
nontopological quantum phase transition takes place as
a function of onsite potential for a Kitaev chain.28
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/h

)

-0.4 -0.2 0 0.2 0.4

V

FIG. 3. Zero-temperature dI/dV vs. V with decreasing
Rashba spin-orbit coupling. Everywhere N = 40, γm =
γ = 1, γ′

m = 0.2 (with m = L,R), µ = 0, B = 0.4 and
|∆| = 0.3. The Rashba spin-orbit coupling is chosen as fol-
lows: (a) α = 0.1, and (b) α = 0.025.

Next we study the role of the Rashba spin-orbit cou-
pling α to observe the ZBCP associated with the zero-
energy Majorana fermions. Usually these semiconductor-
superconductor hybrid structures exhibit small Rashba
splittings which is of order αkF ∼ 0.1 meV where kF is
the Fermi momentum for µ = 0. Therefore we look for
the effect on the ZBCP of a decreasing strength of α. The
pairing gap around the ZBCP is reduced for smaller α as
shown in Fig. 3(a). Further, the gap is fully closed for
an even smaller value of the spin-orbit coupling and the
ZBCP associated with the MBSs disappears; as shown in
Fig. 3(b).

The onsite potential of these hybrid structures can be
tuned by applying gate voltages. However it is difficult
to measure this potential in the current experiments (si-
multaneously, the number of channels in the nanowire
is not exactly known). It has been predicted earlier that
there can be ZBCP in the confined hybrid structures even
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FIG. 4. Zero-temperature dI/dV vs. V with increasing µ at
relatively lower values of B. Everywhere N = 40, γm = γ = 1,
γ′
m = 0.2 (with m = L,R), α = 0.2, B = 0.4 and |∆| = 0.3.

The gate-controlled onsite potential is as follows: (a) µ =
0.25, (Bc = 0.39); (b) µ = 0.3, (Bc = 0.42); (c) µ = 0.5,
(Bc = 0.58); and (d) µ = 1, (Bc = 1.04).

when µ > B for a relatively high magnetic field.32 Here
we check the zero-temperature behavior of the ZBCP at
relatively lower and higher magnetic fields. At a lower
fixed magnetic field B, there is a ZBCP when µ is such

that B > Bc ≡
√

∆2 + µ2 as shown in Fig. 4(a). Only
one sub-band of the wire is occupied at this value of µ
and the spectrum of the isolated wire is gapless. For a
higher value of µ both the sub-bands are occupied, and
then there are two MBSs coupled by s-wave pairing at
each end of the wire. The energy of the two MBSs at the
same end of the wire in the topologically trivial phase
(B becomes smaller than Bc for the corresponding µ) is
non-zero. Therefore the differential conductance shows
two finite-voltage strong peaks at these values of µ. All
these features are shown in Fig. 4(b,c,d). Interestingly,
the height of the split peaks remains 2e2/h which is very
different from the behavior of the split peaks with in-
creasing magnetic field at µ = 0 [cf. Fig. 1(e)]. While
the split peaks with height 2e2/h are coming from the
two coupled MBSs at the same end of the wire, the split
peaks at µ = 0 with increasing B are due to the overlap
of two MBSs from the two ends of the nanowire in the
topologically nontrivial phase.

On the other hand, the behavior of the ZBCP at zero
temperature with increasing µ is quite different at a rel-
atively higher magnetic field. We start with values of µ
and B so that B � Bc at that µ. There the ZBCP is
split and the height of the peaks is almost e2/h as shown
in Fig. 5(a). As we increase µ the splitting of the ZBCP
first disappears and then reappears. These are shown
in Fig. 5(b,c). The values of ∆, µ and B in Fig. 5(b,c)
correspond to a topologically nontrivial phase. When µ
reaches a value where B becomes exactly equal to Bc
of the corresponding µ, the superconducting pairing gap
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FIG. 5. Zero temperature dI/dV vs. V with increasing µ at
larger B. Everywhere N = 40, γm = γ = 1, γ′

m = 0.2 (m =
L,R), α = 0.2, B = 1 and |∆| = 0.3. The gate-controlled
onsite potential is as follows: (a) µ = 0.25, (Bc = 0.39);
(b) µ = 0.5, (Bc = 0.58); (c) µ = 0.95, (Bc = 1.00); (d)
µ = 1, (Bc = 1.04); (e) µ = 1.5, (Bc = 1.53); (f) µ = 2.5,
(Bc = 2.52); (g) µ = 2.9, (Bc = 2.92); and (h) µ = 3.0,
(Bc = 3.01).

closes [see Fig. 5(d)]. For an even larger µ the hybrid
structure would be in principle in the topologically triv-
ial phase for that B as now B < Bc at that µ. However,
we find that the ZBCP reappears again with an increas-
ing µ but the height is smaller than 2e2/h, which is shown
in Fig. 5(e). As we further increase the onsite potential,
the ZBCP splits and finally disappears with another gap
closing step. For a very large value of µ the spectrum is
fully gapped at the given field. It is interesting to com-
pare the emergence of ZBCP in the topologically trivial
phase with the findings of Ref.32 for single and multi-
channel Majorana wires.

We have also found that the height of the ZBCP at
high magnetic fields, both in the topologically nontrivial
and trivial phases, is susceptible to the strength of tunnel
contacts even at zero temperature. The height increases
for a stronger tunnel contact with the baths (lower or
smoother barrier potential) even at zero temperature.
This behavior is different from the nature of ZBCP in the

topologically nontrivial phase at a relatively smaller mag-
netic field [as shown in Fig. 1 panels (c,d)]. The splitting
oscillation of the ZBCP with changing gate-controlled on-
site energy has been observed in Ref. 16 where the height
of the ZBCP is much smaller than 2e2/h even at the low-
est temperatures accessible to experiments. Therefore,
we suspect that the recent experiments have probed this
regime at high B and µ. However, the p-wave compo-
nent of the induced superconducting state is very small
for these parameters and the Majorana end states are not
well protected from the bulk excitations due to a reduced
p-wave component of the induced pairing gap.

V. DISCUSSION AND PROSPECTS

In summary, we have provided a complete theory of
both linear and nonlinear transport in realistic micro-
scopic models of hybrid semiconductor-superconductor
heterostructures with spin-orbit coupling and have shown
the presence of topological superconducting states as re-
vealed by tunneling transport. This is manifest in the
current-voltage characteristics via a ZBCP with a dis-
tinctive variation as a function of temperature and var-
ious experimentally tunable parameters. We used and
provided a detail derivation of the LEGF method, which
we further extended from our previous work28 to include
the elements of spin-orbit coupling and applied magnetic
fields. A nonmonotonic dependence of the height of the
ZBCP with the applied magnetic field and the onsite po-
tential constitutes a characteristic feature of these sys-
tems that cannot be explained away by the presence of
spurious conduction channels (due to the presence of dis-
order or to other features of the nanofabrication of the
heterostructures). Moreover, the predicted alternating
splitting and width modulation in the ZBCP with an in-
creasing magnetic field beyond Bc is a feature that can-
not be generically obtained via a two-level system mecha-
nism (cf. Ref. 38), not even with a Zeeman-field tuning of
single-particle localized levels into degeneracy (similar to
the scenario for the so called singlet-triplet Kondo effect
in quantum dots). The above, combined with the char-
acteristic feature of the coordinated opening and closing
of the superconducting gap as the MBS’s ZBCP first ap-
pears (and then again when it disappears), constitutes a
reasonably individualized scenario that would present a
compelling case for the observation of Majorana states.
We have further shown how the increase of the tunnel
coupling acts to modify the height of the ZBCP at fi-
nite temperatures and controls the appearance of sub-gap
conductance. Our modeling of the contacts is more realis-
tic than in more simplified models prevalent in the litera-
ture and as a result we can meaningfully compare features
arising due the the presence of MBSs versus other quasi-
particle excitations. How these characteristic features
are reflected in other types of transport experiments in-
volving interferometry in Josephson-junction geometries
is an important question for further theoretical and ex-
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perimental study.
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Appendix A: Generalized Quantum Langevin Equations

The generalized quantum Langevin equations for the wire operators in the Majorana basis are explicitly given by
the following two expressions:

ċA,l,σ =
2(µ− γ)

~
cB,l,σ +

2(B + ∆)

~
δσ,↑cB,l,↓ +

2(B −∆)

~
δσ,↓cB,l,↑ −

γ

~
cB,l+1,σ −

γ

~
cB,l−1,σ +

α

~
δσ,↓cB,l+1,↑

+
α

~
δσ,↑cB,l−1,↓ −

α

~
δσ,↓cB,l−1,↑ −

α

~
δσ,↑cB,l+1,↓ + δl,1

(
− iηL,σ − i

∫ ∞
t0

dt′Σ+
L(t− t′)1

2
(cA,1,σ(t′) + icB,1,σ(t′))

+ iη†L,σ + i

∫ ∞
t0

dt′Σ−L (t− t′)1

2
(cA,1,σ(t′)− icB,1,σ(t′))

)
+ δl,N

(
− iηR,σ − i

∫ ∞
t0

dt′Σ+
R(t− t′)

×1

2
(cA,N,σ(t′) + icB,N,σ(t′)) + iη†R,σ + i

∫ ∞
t0

dt′Σ−R(t− t′)1

2
(cA,N,σ(t′)− icB,N,σ(t′))

)
, (A1)

ċB,l,σ = −2(µ− γ)

~
cA,l,σ −

2(B −∆)

~
δσ,↑cA,l,↓ −

2(B + ∆)

~
δσ,↓cA,l,↑ +

γ

~
cA,l+1,σ +

γ

~
cA,l−1,σ −

α

~
δσ,↓cA,l+1,↑

− α

~
δσ,↑cA,l−1,↓ +

α

~
δσ,↓cA,l−1,↑ +

α

~
δσ,↑cA,l+1,↓ + δl,1

(
− ηL,σ −

∫ ∞
t0

dt′Σ+
L(t− t′)1

2
(cA,1,σ(t′) + icB,1,σ(t′))

− η†L,σ −
∫ ∞
t0

dt′Σ−L (t− t′)1

2
(cA,1,σ(t′)− icB,1,σ(t′))

)
+ δl,N

(
− ηR,σ −

∫ ∞
t0

dt′Σ+
R(t− t′)

×1

2
(cA,N,σ(t′) + icB,N,σ(t′))− η†R,σ −

∫ ∞
t0

dt′Σ−R(t− t′)1

2
(cA,N,σ(t′)− icB,N,σ(t′))

)
. (A2)

Appendix B: Steady-state solution of the operators on the nanowire

Expressions for the frequency functions entering the definition of the Green’s function of the full system consisting
of the nanowire and the baths, G+(ω) (cf.34) and used in the steady state solution of the Majorana operators:

Φlm(ω) = ω δlm −
2i(µ− γ)

~
δl,m−2δmod(m+1,4),0 −

2i(∆ +B)

~
δl,m−3δmod(m,4),0 +

iγ

~
δl,m−6δmod(m+1,4),0

+
iα

~
δl,m−7δmod(m,4),0 −

2i(µ− γ)

~
δl,m−2δmod(m,4),0 +

2i(∆−B)

~
δl,m−1δmod(m+1,4),0 +

iγ

~
δl,m−6δmod(m,4),0

− iα

~
δl,m−5δmod(m+1,4),0 +

2i(µ− γ)

~
δl,m+2δmod(l+1,4),0 −

2i(∆−B)

~
δl,m+1δmod(l+1,4),0 −

iγ

~
δl,m−2δmod(m−1,4),0

− iα

~
δl,m−3δmod(m−2,4),0 +

2i(µ− γ)

~
δl,m+2δmod(l,4),0 +

2i(∆ +B)

~
δl,m+3δmod(l,4),0 −

iγ

~
δl,m−2δmod(l,4),0

+
iα

~
δl,m−1δmod(l,4),0 +

iγ

~
δl,m+2δmod(l−1,4),0 −

iα

~
δl,m+1δmod(m,4),0 +

iγ

~
δl,m+2δmod(m,4),0 +

iα

~
δl,m+3δmod(m+1,4),0

− iγ

~
δl,m+6δmod(l+1,4),0 +

iα

~
δl,m+5δmod(l+1,4),0 −

iγ

~
δl,m+6δmod(l,4),0 −

iα

~
δl,m+7δmod(l,4),0, (B1)

Alm(ω) = −Σ+
L(ω)δl,m(δl,1 + δl,2 + δl,3 + δl,4)− Σ+

R(ω)δl,m(δl,4N−3 + δl,4N−2 + δl,4N−1 + δl,4N ), (B2)

h̃m(ω) =
[
η̃L,↑(ω)− η̃†L,↑(−ω)]δm,1 +

[
η̃L,↓(ω)− η̃†L,↓(−ω)]δm,2 − i

[
η̃L,↑(ω) + η̃†L,↑(−ω)]δm,3 − i

[
η̃L,↓(ω) + η̃†L,↓(−ω)]δm,4

+
[
η̃R,↑(ω)− η̃†R,↑(−ω)]δm,4N−3 +

[
η̃R,↓(ω)− η̃†R,↓(−ω)]δm,4N−2 − i

[
η̃R,↑(ω) + η̃†R,↑(−ω)]δm,4N−1
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− i
[
η̃R,↓(ω) + η̃†R,↓(−ω)]δm,4N . (B3)
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